
The symmetric group Sn and

the alternating group An

In this article, we will introduce the “symmetric group” and “alternat-
ing group” as examples of group. The symmetric group Sn is a group of
all permutations of a set of n elements. We encountered the concept of
permutation in our earlier article “Bosons, Fermions, and Pauli’s exclusion
principle.”

Let’s consider why permutations form a group. We will consider the case
when n = 5, as an example. Let’s consider a permutation of (1, 2, 3, 4, 5).
If (1, 2, 3, 4, 5) becomes (2, 4, 3, 1, 5) after a permutation, we represent this
permutation by

σ =

(
1 2 3 4 5
2 4 3 1 5

)
(1)

In other words, in this permutation, we have

1→ 2

2→ 4

3→ 3 (2)

4→ 1

5→ 5

The rule is that a number becomes whatever the number below the original
number is in (1). Another common notation is following.

σ =

(
1 2 3 4 5

σ(1) σ(2) σ(3) σ(4) σ(5)

)
(3)

In our case, we have σ(1) = 2, σ(2) = 4, σ(3) = 3 and so on.
Then, how many possibilities are there for a permutation of 5 objects?

There are 5! possibilities: σ(1) can take any value from 1 to 5, σ(2) can take
any value from 1 to 5 except for the one chosen for σ(1), and σ(3) can take
any value from 1 to 5 except for the ones chosen for σ(1) and σ(2). The
similar considerations can be made for σ(4) and σ(5). Thus, we indeed get
5× 4× 3× 2× 1 = 5!; there are a total of 5! different functions for σ.
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Regarding the expression of σ, there is actually no reason to write the
first row in (1) in the alphabetical order. We could express the same per-
mutation as (1) by

σ =

(
3 2 1 5 4
3 4 2 5 1

)
(4)

We still have σ(3) = 3, σ(2) = 4, σ(1) = 2, and so on just as before.
Now, we can think of the group operation for permutation. For example,

consider

σ′ =

(
1 2 3 4 5
3 1 5 2 4

)
(5)

In other words,

1→ 3

2→ 1

3→ 5 (6)

4→ 2

5→ 4

Then, we can define σ • σ′ by two successive permutations of σ′ and σ. For
example, from (2) and (6), σ • σ′ is given by

1→ 3→ 3

2→ 1→ 2

3→ 5→ 5 (7)

4→ 2→ 4

5→ 4→ 1

In other words,

σ • σ′ =
(

1 2 3 4 5
3 2 5 4 1

)
(8)

or, more generally,

σ • σ′ =
(

1 2 3 4 5
σ(σ′(1)) σ(σ′(2)) σ(σ′(3)) σ(σ′(4)) σ(σ′(5))

)
(9)

So, we defined the group multiplication. Now, it is very easy to check
that this group multiplication satisfies the four group axiom. First of all, it
is obvious from our example that, if σ and σ′ are two permutations, then
σ • σ′ is also a permutation. In other words, if σ and σ′ are two elements
of the symmetric group, σ • σ′ is also an element of the symmetric group.
Second, σ • (σ′ • σ′′) = (σ • σ′) • σ′′ is also obvious, as both expressions send
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an element a to σ(σ′(σ′′(a))). Third, the identiy element of the symmetric
group Sn is given by

e =

(
1 2 · · · n− 1 n
1 2 · · · n− 1 n

)
(10)

It is easy to check that σ • e = e •σ = σ. Fourth, the inverse element is also
easy to find. For example, if σ is an element of S5, i.e.,

σ =

(
1 2 3 4 5
a b c d e

)
(11)

we have

σ−1 =

(
a b c d e
1 2 3 4 5

)
(12)

This completes the proof that the set of all permutations for n elements is
indeed a group. This is a group called Sn.

How many elements are there in S5? Earlier, we have seen that there
are 5! possible functions for σ. Therefore, there are 5! elements in S5. In
general, there are n! elements in Sn.

Problem 1. Explain why D4, introduced in the last article, is a sub-
group of S4.

Problem 2. Explain why S4 is a subgroup of S5.
Now, we will introduce the alternating group An. First, recall from

our earlier article “Bosons, Fermions, and Pauli’s exclusion principle” what
even permutation and odd permutation are. As before, we will give you
examples when the number of permutated objects are 5. Let a1, a2, a3, a4,
a5 be grassmann numbers. Then, we had

aσ(i)aσ(j)aσ(k)aσ(l)aσ(m)

aiajakalam
=

{
+1, if σ is an even permutation
−1, if σ is an odd permutation

(13)

In other words, a permutation which you can reach by even number of
swaps is an even permutation, and a permutation which you can reach by
odd number of swaps is an odd permutation. Every time you swap, you
get a minus sign in the product of Grassmann numbers. If you swap even
number of times, you get a positive sign, and if odd number of times, you
get a negative sign.

Problem 3. Show that

• If σ is an even permutation, σ′ is an even permutation, σ • σ′ is an
even permutation.

• If σ is an even permutation, σ′ is an odd permutation, σ •σ′ is an odd
permutation.
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• If σ is an odd permutation, σ′ is an even permutation, σ •σ′ is an odd
permutation.

• If σ is an odd permutation, σ′ is an odd permutation, σ •σ′ is an even
permutation.

Problem 4. Show that a group of even permutation forms a subgroup
of Sn. This group is called “alternating group” An.

How many elements are there in an alternating group An? We will
now show that the number of even permutations and the number of odd
permutations in Sn are the same, by matching each even permutation with
each odd permutation. The one-to-one matching is given by(

1 2 3 4 5
σ(1) σ(2) σ(3) σ(4) σ(5)

)
↔

(
1 2 3 4 5

σ(2) σ(1) σ(3) σ(4) σ(5)

)
(14)

Notice that if the left one is an even permutation, the right one is an odd
permutation, and vice versa. This is so, because

aσ(1)aσ(2)aσ(3)aσ(4)aσ(5) = −aσ(2)aσ(1)aσ(3)aσ(4)aσ(5) (15)

As the numbers of even permutation and odd permutation are equal, the
number of even permutation is half of the number of elements in Sn. Thus,
the alternating group An has n!/2 elements.

Final comment. In our earlier article “Quadratic equation,” we brielfy
mentioned that the French mathematician Galois proved that there is no
general solution to quintic equations (i.e., ax5+bx4+cx3+dx2+ex+f = 0)
or higher-order equations. As it is impossible to explain his proof in a couple
of pages, I just want to comment that he used the property of S5 to prove
this. First, let me explain that the quintic equations are invariant under the
action of S5 group in the solution. No. Let me just explain that the cubic
equations (ax3 + bx2 + cx+d = 0) are invarint under the action of S3 group,
as you can figure out yourself the quintic case from the same reasoning. If
the solution to a cubic equation is s1, s2, s3, we have

ax3 + bx2 + cx+ d = a(x− s1)(x− s2)(x− s3) = 0 (16)

which implies

b = −a(s1 + s2 + s3), c = a(s1s2 + s1s3 + s2s3), d = −as1s2s3 (17)

Given this, notice that these equations (17) don’t change under the permu-
tations of s1, s2, s3. For example, for the following permutation(

s1 s2 s3
s2 s3 s1

)
(18)
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(16) becomes

ax3 + bx2 + cx+ d = a(x− s2)(x− s3)(x− s1) = 0 (19)

which is exactly the same as (16), which implies (17) doesn’t change either.

Summary

• A group of all permutations of a set of n elements is called the “sym-
metric group” Sn.

• The symmetric group Sn has n! elements.

• A permutation is either an even permutation or an odd permutation.

• The even permutation in an symmetric group forms a group called
“alternating group.”

• The number of elements in an alterating group An is n!/2.
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