Symmetry and conservation law in quantum
mechanics

In our earlier article “Noether’s theorem,” we have seen that there is
a conserved charge for every symmetry. In this article, we will see how
quantum picture of this looks like.

There, we have seen that if a Lagrangian is invariant under the deforma-
tion generated by @, @ is conserved. i.e, Cil—cf = 0. This implies {Q,H} =0
which in turn implies [@, H] = 0. For example, if the z-component of mo-
mentum is conserved, [P,, H| = 0 must be satisfied.

Problem 1. Consider a Hamiltonian given by

H= —;;L + V(z) (1)

Then, show that the xz-component of momentum is conserved, only when
V(z) is constant. (Of course, this is obvious as there is no force, only when
the potential is constant. We can also see this from Noether’s theorem
picture. If the potential is constant, the system has a spatial translational
symmetry as V(z) = V(z +€).)

Now, we will see how a particular quantity ¢ changes under ). From
“Noether’s theorem” article, we know e{q, @} = dq. In other words,

e{q(@), @} = qla+€) — q() (2)

Let’s find its quantum analogue. As an example, we will consider the space
translation by x direction for the generator (). For infinitesimal distance e,

we have
vate) = v+ o) ®)
= @)+ ) g

Actually, we have already seen this when you proved
Py () = (a4 o)

in our earlier article “A short introduction to quantum mechanics X.”



The expectation value of ¢(z) is given by
(@) = [ ¥ @a()(e)da (6)
Similarly,
e+ = Wlalw+al) = [0 @0+ uds (1)
= [ ¥ Oata)ula - do (8)
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Thus,
(6a) = {a(@ + ) — a(2)) = =(la. P2]) (10)

Notice that this relation is exactly (2), with @ = P,, and the Poisson bracket
appropriately replaced by the commutator! Here, we only considered the
space translation, one can easily derive other cases such as time translation
and rotation similarly.

Now, remember that e in (5) generates the translation of finite
(i.e. not infinitesimal) distance a. Similarly, if () generates a symmetry of a
physical system, the unitary operator that shifts the coordinate o to a + a
under such a symmetry is given by U(a) = exp(iQa/h). In other words,

Ula)yp(e) = ¢(a+a) (11)

iPya/h

Of course, now a can mean other coordinates than positions such as time
or angle. If @ is conserved, from [Q, H] = 0, we can derive

[U(a), H] =0 (12)

Given this, consider an eigenstate of Hamiltonian [¢) with eigenvalue E.
We will assume that the eigenvalues are all distinct; there is at most one
eigenstate with a given eigenvalue. Then, from (12), we have

HU(a)[y) = Ula)Hp) (13)
HU(a)ly) = U(a)E[Y) (14)
HU(@)|$)) = EU(a))) (15)

Thus we see that U(a)|y) is also an eigenstate of Hamiltonian with eigen-
value E. As there is at most one eigenstate with a given eigenvalue, U(a)|1))
must be proportional to |¢). As U(a) is a unitary operator, we must have

U(a)lih) = e@ap) (16)



Now, remember (11). Thus, we have
U(a)y(a) = ¢ Di(a) = y(a + a) (17)
In conclusion, we have
¢ @Wy(a) = (o +a) (18)

for some real ¢(a) i.e., some phase '),

On the other hand, we could have arrived at the same conclusion ap-
proaching it from a different direction. If the system has the symmetry
under o — « + a, we might want to need

P(a) =¥(a+a) (19)

However, according to the concept of global gauge transformation, 1(«) and
e?(@)4p () describe the same physics. Thus, we can relax the above condition
to

" Wp(a) = (a +a) (20)

which is exactly (18) upon the identification 6(a) = ¢(a)!

Problem 2. Show that f(a) must be proportional to a. (Hint!)

In this article, we have considered only continuous symmetries. Symme-
try of type a — a + a, where a can be any real number is called continuous
symmetry. In the next article, we will consider a discrete symmetry called
“parity.”

Summary

e Noether’s theorem can be equally applied to quantum mechanics.

e Symmetry of type @ — a+a, where a can be any real number is called
continuous symmetry.

'Show 6(a) + 0(b) = O(a + b).



