
A short introduction to quantum mechanics VIII:

the time-dependent Schrödinger equation

In earlier articles, I explained Schrödinger equation. The wave function
with a definite energy was a solution to the Schrödinger equation. The wave
function so obtained was a function of x. It was a function of position only,
independent of time.

However, this is unsatisfactory. We explained that a particle is described
by its wave function. If the wave function doesn’t evolve over time, noth-
ing about its particle will change; its position won’t change, its momentum
won’t change, as their expectation values won’t have any time-dependence.
However, we do know that particles in our Universe change their position
and momentum. Thus, we come to the conclusion that a wave function must
change over time.

Such a wave function must obey a new Schrödinger equation that dictates
how it must evolve over time. Such a Schrödinger equation is called “the
time-dependent Schrödinger equation.” Our earlier Schrödinger equation
that doesn’t depend on time is called “the time-independent Schrödinger
equation.” In this article, we will motivate and introduce the time-dependent
Schrödinger equation.

To this end, consider the following plane wave with the wave number k
and the angular frequency ω:

ψ(x, t) = A exp(i(kx− ωt)) (1)

where

k =
2π

λ
, ω =

2π

T
= 2πf (2)

Then, it is easy to see that this plane wave is an eigenvector of momentum
operator. If we apply the momentum operator to (1), we get

−ih̄∂ψ(x, t)
∂x

= h̄kψ(x, t) (3)

Thus, its momentum eigenvalue is h̄k. Now, notice

p = h̄k =
h

2π

2π

λ
=
h

λ
(4)
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Thus, we obtain de Broglie’s relation. In other words, we obtained that a
wave function with a wavelength λ has the momentum h/λ. Put it slightly
differently, the wave function of a particle with the momentum p has the
wavelength h/p.

Can we also get the following Planck’s relation from (1)?

E = hf = h
ω

2π
= h̄ω (5)

Recall what we did with the momentum operator and de Broglie’s relation.
We pulled out the factor ik from (1) by taking a partial derivative with
respect to x. Then, by multiplying it by −ih̄, we obtained p = h̄k, which is
de Broglie’s relation.

Thus, we see that we can get the factor −iω from (1) by taking a partial
derivative with respect to t and by multiplying it by ih̄, we can obtain
E = h̄ω. That is,

ih̄
∂ψ(x, t)

∂t
= h̄ωψ(x, t) (6)

As much as the momentum operator is −ih̄ ∂
∂x

, we can say the energy oper-

ator is given by ih̄
∂

∂t
. In other words, a wave function with a definite energy

E satisfies

ih̄
∂ψ(x, t)

∂t
= Eψ(x, t) (7)

Actually, this equation is satisfied not just for plane waves (i.e. waves such
as (1) which have a definite frequency, wavelength and a definite direction),
but also for any waves; as much as the momentum operator is given by

−ih̄ ∂
∂x

regardless of whether the wave function concerned is a plane wave,

the energy operator is given by ih̄
∂

∂t
, and (7) is just the eigenvalue problem

of the energy operator.
Problem 1. Using Planck’s relation and de Broglie’s relation, show that

(1) can be re-expressed as

ψ(x, t) = A exp(i(px− Et)/h̄) (8)

Finally, we can state the time-dependent Schrödinger equation. Recall
the following time-independent Schrödinger equation:

− h̄2

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x) = Eψ(x) (9)

As there is no partial derivative with respect to t, we can as well say the
above equation as

− h̄2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t) = Eψ(x, t) (10)
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Then, by connecting it with (7), the time-dependent Schrödinger equation
is given by

− h̄2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t) = ih̄

∂ψ(x, t)

∂t
(11)

Now, let’s obtain the solution to the time-dependent Schrödinger equa-
tion.

Problem 2. Show that ψ(x, t) = ψ(x)e−iEt/h̄ satisfies (11) provided
that ψ(x) satisfies (9).

Problem 3. Check that the linear combination of the solution to the
time-dependent Schrödinger equation is also a solution to the time-dependent
Schrödinger equation. In other words, for constant cns,

ψ(x, t) =
∑
n

cnψn(x, t) (12)

satisfies (11) if ψn(x, t) satisfies (11).
More concretely, if ψn(x, t) is a solution to the time-dependent Schrödinger

equation with energy En, we can write ψn(x, t) = ψn(x)e
−iEnt/h̄, where

ψn(x) is a normalized solution to the time-independent Schrödinger equa-
tion, i.e.,

− h̄2

2m

∂2ψn(x)

∂x2
+ V (x)ψn(x) = Enψn(x) (13)

Then, (12) can be re-expressed as

ψ(x, t) =
∑
n

cnψn(x)e
−iEnt/h̄ (14)

Here, we see that the wave function with arbitrary t is completely determined
once we know cn.

Given the form of the wave function that evolves over time, let’s ask
a question about such wave functions. In our earlier articles, we empha-
sized the importance of the normalization. Unless a particle is created or
destroyed, its wave function must remain normalized once it is normalized.

Let’s check this. First, let’s express (14) slightly differently as follows:

|ψ(t)⟩ =
∑
n

cn|ψn⟩e−iEnt/h̄ (15)

When t = 0, we have

|ψ(0)⟩ =
∑
n

cn|ψn⟩ (16)

As mentioned before, |ψn⟩ is the normalized eigenvector of the Hamiltonian
operator with eigenvalue En, i.e.,

H|ψn⟩ = E|ψn⟩ (17)
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As H is Hermitian and |ψn⟩s are normalized, we have

⟨ψn|ψm⟩ = δnm (18)

Then, the condition that (16) is normalized means

1 =
∑
n

|cn|2 (19)

Given this, let’s check (15) is normalized.

⟨ψ(t)|ψ(t)⟩ =

(∑
m

c∗m⟨ψm|eiEmt/h̄

)(∑
n

cn|ψn⟩e−iEnt/h̄

)
(20)

=
∑
m

∑
n

c∗mcn⟨ψm|ψn⟩eiEmt/h̄e−iEnt/h̄ (21)

=
∑
m

∑
n

c∗mcnδmne
iEmt/h̄e−iEnt/h̄ (22)

=
∑
n

c∗ncne
iEnt/h̄e−iEnt/h̄ (23)

=
∑
n

|cn|2 = 1 (24)

Thus, it is indeed normalized.
Earlier, we showed that the wave function with arbitrary time is com-

pletely determined once we know cn. So, how can we obtain cn, given the
initial wave function (i.e., when t = 0)? If we multiply (16) on the left by
⟨ψm|, we get

⟨ψm|ψ(0)⟩ =
∑
n

cn⟨ψm|ψn⟩ =
∑
n

cnδmn = cm (25)

In other words, cn can be obtained by

cn = ⟨ψn|ψ(0)⟩ =
∫
ψ∗
n(x)ψ(x, 0)dx (26)

Final comment. In our earlier article “traveling wave,” we have seen that
the velocity of wave is given by v = ω/k = λ/T = λf . Plugging (4) and (5)
into this equation, we get:

v =
ω

k
=
h̄ω

h̄k
=
E

p
=

1
2mv

2

mv
=
v

2
(27)

So, we get a contradiction. The propagating speed of the wave function
seems to be half of the speed of the object that the wave function describes.
Nevertheless, we will resolve this contradiction in our later article “Group
velocity and phase velocity.”
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Problem 4. Let’s say ψn(x) satisfies the time-independent Schrödinger
equation (13). Supposing that the wave function at t = 0 is given by

Ψ(x, t = 0) =
1√
2
(ψ1(x) + iψ2(x)), obtain Ψ(x, t) for arbitrary t. Express

your answer in terms of ψ1(x), ψ2(x), E1 and E2.
Problem 5. By using (15) and (17), obtain an expression for the expec-

tation value of the Hamiltonian and check that it does not change over time,
as long as the Hamiltonian operator H is Hermitian. This result shows the
conservation of energy.

Problem 6. Let’s say that A is an observable and |a⟩ is an eigenvector
of Hamiltonian with eigenvalue Ea. Let’s say that a state is initially (i.e.
t = 0) given by |a⟩. Calculate its expectation value of A at time t if its
initial expectation value is given by ⟨A(t = 0)⟩ = ⟨a|A|a⟩.

Problem 7. Assume that a state is in a linear combination of the state
with energy E1 and the state with energy E2. Then, the expectation value
of its position x oscillates. What is the period of this oscillation? Notice
that expectation value of any observable oscillates with the same period, as
the probability density oscillates in this period. (Remark. Physically similar
thing is happening in “neutrino oscillation,” except that a neutrino is a
linear combination of three eigenstates of energy. We will talk more about
neutrino oscillation in a later article.)

Summary

� A wave travelling in the positive x-direction with wave number k,
angular frequency ω, momentum p, and energy E, can be written as

ψ(x, t) = Aei(kx−ωt) = Aei(px−Et)/h̄

� Schrödinger equation can be written as

ih̄
∂ψ

∂t
= Hψ

where

H = − h̄2

2m

∂2

∂x2
+ V (x)

� A general solution to the time-dependent Schrödinger equation is given
by

ψ(x, t) =
∑
n

cnψn(x)e
−iEnt/h̄

where

− h̄2

2m

∂2ψn(x)

∂x2
+ V (x)ψn(x) = Enψn(x)

� cn can be obtained by

cn = ⟨ψn|ψ(0)⟩ =
∫
ψ∗
n(x)ψ(x, 0)dx
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