The trace

Trace is defined as the total sum of diagonal elements of a square matrix. For example, if we have a following matrix:

$$
A=\left(\begin{array}{cccc}
-2 & 4 & -1 & 0 \tag{1}\\
-1 & 3 & -1 & 5 \\
2 & -2 & 1 & -2 \\
0 & 0 & 1 & 4
\end{array}\right)
$$

its trace is given by following:

$$
\begin{equation*}
\operatorname{tr}(A)=-2+3+1+4=6 \tag{2}
\end{equation*}
$$

In other words, for an $n \times n$ matrix $A_{i j}$, the trace is given by:

$$
\begin{equation*}
\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i i} \tag{3}
\end{equation*}
$$

Using this notation, it is easy to check the following:

$$
\begin{equation*}
\operatorname{tr}(A B)=\operatorname{tr}(B A) \tag{4}
\end{equation*}
$$

since

$$
\begin{align*}
& (A B)_{i j}=\sum_{k} A_{i k} B_{k j} \tag{5}\\
\operatorname{tr}(A B)= & \sum_{i}(A B)_{i i} \tag{6}\\
= & \sum_{i} \sum_{k} A_{i k} B_{k i}=\sum_{k} \sum_{i} B_{k i} A_{i k} \tag{7}\\
= & \sum_{k}(B A)_{k k}=\operatorname{tr}(B A) \tag{8}
\end{align*}
$$

Problem 1. Prove the following:

$$
\begin{equation*}
\operatorname{tr}(A B C)=\operatorname{tr}(B C A)=\operatorname{tr}(C A B) \tag{9}
\end{equation*}
$$

Comment: More generally, we have

$$
\operatorname{tr}(A B C \cdots Z)=\operatorname{tr}(B C \cdots Z A)=\operatorname{tr}(C D \cdots Z A B)=\cdots=\operatorname{tr}(Z A B C \cdots Y)
$$

Summary

- Trace is the sum of diagonal elements of a square matrix.
- $\operatorname{tr}(A B)=\operatorname{tr}(B A)$

