
The transpose and Hermitian conjugate

Transpose is an important operation for matrices. Using components,
the transpose of a matrix A is defined as follows:

(AT )ij = Aji (1)

In other words, the transpose occurs when the column and row of a matrix
are exchanged. Here is an example:

If A is defined as follows:

A =

 1 −1
2 3
3 5

 (2)

Then, we have:

AT =

(
1 2 3
−1 3 5

)
(3)

A useful property of the transpose operation is that:

(AB)T = BTAT (4)

This is easy to prove.

((AB)T )ij = (AB)ji =
∑
k

AjkBki =
∑
k

(BT )ik(AT )kj = (BTAT )ij (5)

A symmetric matrix is a matrix for which the transpose is itself. In other
words,

MT = M (6)

Here is an example of a symmetric matrix.

A =

 1 −5 4
−5 3 2
4 2 0

 (7)

Notice that a symmetric matrix necessarily has the same number of rows
and columns. In the above example, this number is 3.
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In quantum mechanics, it is more useful to use the Hermitian conjugate
(Or Conjugate Transpose) than the transpose. The Hermitian conjugate of
a matrix A is defined as follows:

(A†)ij = A∗ji (8)

Here, * denotes complex conjugate, and † is pronounced “dagger.” Sim-
ilarly as in the case of transpose, one can easily see the following relation:

(AB)† = B†A† (9)

If the Hermitian conjugate of a matrix is itself, we call the matrix a
Hermitian matrix. Here is an example of a Hermitian matrix:

A =

 1 1 + i 2− 3i
1− i 3 4
2 + 3i 4 2

 (10)

Notice that the diagonal part of a Hermitian matrix is necessarily real.
(1, 3, and 2 are the diagonal parts. i.e. the top left to bottom right diagonal
parts) This is expected, because of the following condition:

A∗kk = Akk (11)

(By definition, a Hermitian matrix satisfies Aij = A∗ji. Set both i and j
equal to k.)

Problem 1. Prove the followings:

(A + B)† = A† + B† (12)

(A†)† = A (13)

(ABC)† = C†B†A† (14)

(cA)† = c∗A† (15)

where c is a number.

Problem 2. Prove that D + D† is Hermitian for any arbitrary square
matrix D. (Hint1)

Problem 3. A matrix E is called “anti-Hermitian” if it satisfies E = −E†.
Prove that F − F † is anti-Hermitian for any arbitrary square matrix F .

Problem 4. Prove that iG is anti-Hermitian if G is Hermitian. (Hint2)

1Use (12) and (13)
2Use (15).
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Problem 5. Prove that any arbitrary square matrix H can be expressed
as a sum of Hermitian matrix and anti-Hermitian matrix.

Problem 6. Let M and N be two 3× 3 symmetric matrices, and

r =

 x
y
z

 (16)

Express m = 8x2 − y2 + 3z2 and n = −x2 + y2 − 3z2 + 2xy − 4xz using
M , N , i.e., m = rTMr and n = rTNr. If you correctly solve this problem,
there will be no off-diagonal terms for M .

Problem 7. Prove that JJ† is Hermitian for any arbitrary square ma-
trix J . (Hint3)

Problem 8. Prove that AB−BA is anti-Hermitian if A and B are Hermi-
tian.

Problem 9. A matrix U is called “unitary” if it satisfies UU † = I. Prove
that eiH is unitary for any arbitrary Hermitian matrix H. (It may seem
odd that an exponent can be a matrix. However, we can understand the
expression in terms of Taylor series as follows.) (Hint4)

eiH = 1 + (iH) +
(iH)2

2!
+

(iH)3

3!
+

(iH)4

4!
+ · · · (17)

Summary

• The dagger † is defined by (A†)ij = A∗ji.

• A Hermitian matrix A satisfies A† = A.

• The diagonal part of a Hermitian matrix is necessarily real.

• (A + B)† = A† + B†

• (AB)† = B†A†

• (cA)† = c∗A†.

3Use (9) and (13).
4Show (eiH)† = 1 + (−iH) + (−iH)2

2!
+ · · · and use the following expansion that is

satisfied by any number c.

ece−c =

(
1 + c +

c2

2!
+

c3

3!
+ · · ·

)(
1 + (−c) +

(−c)2

2!
+

(−c)3

3!
+ · · ·

)
= 1
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