The transpose and Hermitian conjugate

Transpose is an important operation for matrices. Using components, the transpose of a matrix A is defined as follows:

$$
\begin{equation*}
\left(A^{T}\right)_{i j}=A_{j i} \tag{1}
\end{equation*}
$$

In other words, the transpose occurs when the column and row of a matrix are exchanged. Here is an example:

If A is defined as follows:

$$
A=\left(\begin{array}{cc}
1 & -1 \tag{2}\\
2 & 3 \\
3 & 5
\end{array}\right)
$$

Then, we have:

$$
A^{T}=\left(\begin{array}{ccc}
1 & 2 & 3 \tag{3}\\
-1 & 3 & 5
\end{array}\right)
$$

A useful property of the transpose operation is that:

$$
\begin{equation*}
(A B)^{T}=B^{T} A^{T} \tag{4}
\end{equation*}
$$

This is easy to prove.

$$
\begin{equation*}
\left((A B)^{T}\right)_{i j}=(A B)_{j i}=\sum_{k} A_{j k} B_{k i}=\sum_{k}\left(B^{T}\right)_{i k}\left(A^{T}\right)_{k j}=\left(B^{T} A^{T}\right)_{i j} \tag{5}
\end{equation*}
$$

A symmetric matrix is a matrix for which the transpose is itself. In other words,

$$
\begin{equation*}
M^{T}=M \tag{6}
\end{equation*}
$$

Here is an example of a symmetric matrix.

$$
A=\left(\begin{array}{ccc}
1 & -5 & 4 \tag{7}\\
-5 & 3 & 2 \\
4 & 2 & 0
\end{array}\right)
$$

Notice that a symmetric matrix necessarily has the same number of rows and columns. In the above example, this number is 3 .

In quantum mechanics, it is more useful to use the Hermitian conjugate (Or Conjugate Transpose) than the transpose. The Hermitian conjugate of a matrix A is defined as follows:

$$
\begin{equation*}
\left(A^{\dagger}\right)_{i j}=A_{j i}^{*} \tag{8}
\end{equation*}
$$

Here, * denotes complex conjugate, and \dagger is pronounced "dagger." Similarly as in the case of transpose, one can easily see the following relation:

$$
\begin{equation*}
(A B)^{\dagger}=B^{\dagger} A^{\dagger} \tag{9}
\end{equation*}
$$

If the Hermitian conjugate of a matrix is itself, we call the matrix a Hermitian matrix. Here is an example of a Hermitian matrix:

$$
A=\left(\begin{array}{ccc}
1 & 1+i & 2-3 i \tag{10}\\
1-i & 3 & 4 \\
2+3 i & 4 & 2
\end{array}\right)
$$

Notice that the diagonal part of a Hermitian matrix is necessarily real. (1,3 , and 2 are the diagonal parts. i.e. the top left to bottom right diagonal parts) This is expected, because of the following condition:

$$
\begin{equation*}
A_{k k}^{*}=A_{k k} \tag{11}
\end{equation*}
$$

(By definition, a Hermitian matrix satisfies $A_{i j}=A_{j i}^{*}$. Set both i and j equal to k.)

Problem 1. Prove the followings:

$$
\begin{gather*}
(A+B)^{\dagger}=A^{\dagger}+B^{\dagger} \tag{12}\\
\left(A^{\dagger}\right)^{\dagger}=A \tag{13}\\
(A B C)^{\dagger}=C^{\dagger} B^{\dagger} A^{\dagger} \tag{14}\\
(c A)^{\dagger}=c^{*} A^{\dagger} \tag{15}
\end{gather*}
$$

where c is a number.
Problem 2. Prove that $D+D^{\dagger}$ is Hermitian for any arbitrary square matrix D. $\left(\right.$ Hint $\left.^{1}\right)$

Problem 3. A matrix E is called "anti-Hermitian" if it satisfies $E=-E^{\dagger}$. Prove that $F-F^{\dagger}$ is anti-Hermitian for any arbitrary square matrix F.

Problem 4. Prove that $i G$ is anti-Hermitian if G is Hermitian. (Hint ${ }^{2}$)

[^0]Problem 5. Prove that any arbitrary square matrix H can be expressed as a sum of Hermitian matrix and anti-Hermitian matrix.

Problem 6. Let M and N be two 3×3 symmetric matrices, and

$$
r=\left(\begin{array}{l}
x \tag{16}\\
y \\
z
\end{array}\right)
$$

Express $m=8 x^{2}-y^{2}+3 z^{2}$ and $n=-x^{2}+y^{2}-3 z^{2}+2 x y-4 x z$ using M, N, i.e., $m=r^{T} M r$ and $n=r^{T} N r$. If you correctly solve this problem, there will be no off-diagonal terms for M.

Problem 7. Prove that $J J^{\dagger}$ is Hermitian for any arbitrary square matrix $J .\left(\right.$ Hint $\left.^{3}\right)$

Problem 8. Prove that $A B-B A$ is anti-Hermitian if A and B are Hermitian.

Problem 9. A matrix U is called "unitary" if it satisfies $U U^{\dagger}=I$. Prove that $e^{i H}$ is unitary for any arbitrary Hermitian matrix H. (It may seem odd that an exponent can be a matrix. However, we can understand the expression in terms of Taylor series as follows.) (Hint ${ }^{4}$)

$$
\begin{equation*}
e^{i H}=1+(i H)+\frac{(i H)^{2}}{2!}+\frac{(i H)^{3}}{3!}+\frac{(i H)^{4}}{4!}+\cdots \tag{17}
\end{equation*}
$$

Summary

- The dagger \dagger is defined by $\left(A^{\dagger}\right)_{i j}=A_{j i}^{*}$.
- A Hermitian matrix A satisfies $A^{\dagger}=A$.
- The diagonal part of a Hermitian matrix is necessarily real.
- $(A+B)^{\dagger}=A^{\dagger}+B^{\dagger}$
- $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$
- $(c A)^{\dagger}=c^{*} A^{\dagger}$.

[^1]
[^0]: ${ }^{1}$ Use (12) and (13)
 ${ }^{2}$ Use (15).

[^1]: ${ }^{3}$ Use (9) and (13).
 ${ }^{4}$ Show $\left(e^{i H}\right)^{\dagger}=1+(-i H)+\frac{(-i H)^{2}}{2!}+\cdots$ and use the following expansion that is satisfied by any number c.

 $$
 e^{c} e^{-c}=\left(1+c+\frac{c^{2}}{2!}+\frac{c^{3}}{3!}+\cdots\right)\left(1+(-c)+\frac{(-c)^{2}}{2!}+\frac{(-c)^{3}}{3!}+\cdots\right)=1
 $$

