
Travelling spring waves

In the earlier article, we considered the case in which two or three objects were connected

to the springs or pendulums. In this article, we will consider the case that involves many

objects, but each has the same mass and is connected to two springs with equal, universal

spring constant. At first glance, the task at our hand may seem overwhelming; if there are

n-objects, the equation for ω2 that one can obtain from the determinant is an n-th order

equation which is very hard to solve. Nevertheless, as we will see, the fact that all the objects

and all the springs are same, simplifies the problem greatly, and allows us to dispense with

calculating determinants.

See Fig.1. We have infinitely many objects with mass M and springs with spring constant

K. They are oscillating, and we named the objects by integer n. In the figure, a particular

mode is depicted. At the moment, the objects are packed around the object 3 (i.e. dense)

and the objects are least packed around the object 0 and object 6 (i.e. light). It is easy to

imagine that this pattern will go on as n increases. For example, objects near objects 9, 15,

21 will be dense and objects near object 12, 18, 24 will be light. As this pattern goes on, we

can express the mode as a periodic function. Using the fact that sine and cosine functions

are good examples of periodic functions, we can try to set the amplitudes of this mode to be

sine or cosine functions.

See Fig.2. x-axis denotes n and y-axis denotes the amplitudes of Fig.1. Here, we see that

the amplitudes are enveloped inside a sine function. Now, let’s prove that such ones are good

modes. First, we naturally have:

Mẍn = −K(xn − xn−1) −K(xn − xn+1) (1)

Now, let the amplitudes in our mode be the following:

xn = A sin(nkL+ φ1) sin(ωt+ φ2) (2)

Figure 1: infinitely many objects and springs
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Figure 2: amplitudes of a given mode

where L is the distance between the neighboring object when the spring is neither stretched

nor compressed. We include this factor for future convenience.

Then, letting nkL+ φ1 = θ for simplicity, and plugging (2) to (1) yields:

−Mω2A sin θ = −KA(2 sin θ − sin(θ − kL) − sin(θ + kL)) (3)

−Mω2A sin θ = −KA sin θ(2 − 2 cos(kL)) (4)

ω2 =
2K

M
(1 − cos(kL)) =

4K

M
sin2

(
kL

2

)
(5)

ω = 2

√
K

M
sin

(
kL

2

)
(6)

As this expression doesn’t involve n, we see that it is a good mode oscillating altogether with

the same frequency that doesn’t depend on n. Also, in the example of our mode, we assumed

certain xns were zero such as n = 0, 3, 6, but in general case there is no reason to assume so,

as long as (2) is satisfied. We just assumed so to help you understand better by presenting

the concepts of “dense” and “light.” Furthermore, notice that the above equation is satisfied

for any k. This is natural, as there are infinitely many modes as there are infinitely many

objects.

Final comment. Even though we have considered springs in this article, our formulation

here is general enough to be applied to most of the systems that involve travelling waves.

For example, when the sound propagates, it has a pattern that dense part and light part are

repeated. Actually, in the next article, we will derive the speed of sound using our formulation

in this article.

Problem 1. Obtain how fast the spring waves propagate by using (6). You will see that

our earlier inclusion of the factor L is now convenient. Also, approximate your answer in

the limit when the distance between two adjacent objects (i.e. L) is much smaller than the

wavelength of the spring wave. You will see that the answer won’t depend on k any more in

this limit.

You just obtained the speed of the spring wave in the limit L is much smaller than

wavelength, but there is another, perhaps, much easier way to obtain the same expression.

To this end, let’s re-write (1) in a slightly different notation to avoid a confusion. Let’s denote

the displacement by φ instead of x.

Mφ̈n = −K(φn − φn−1) −K(φn − φn+1) (7)
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= −KLφn − φn−1

L
+KL

φn+1 − φn
L

(8)

Recall now that n in φn means the displacement of nth object. Recalling that the position

of the nth object when the displacement is zero is x = nL, from now on we will use the

notation φ(x = nL) ≡ φn. Then, the above expression becomes

Mφ̈(nL) = −KLφ(nL) − φ(nL− L)

L
+KL

φ(nL+ L) − φ(nL)

L
(9)

when L is infinitesimally small, we can write

φ(nL) − φ(nL− L)

L
=
∂φ

∂x
(nL− L/2),

φ(nL+ L) − φ(nL)

L
=
∂φ

∂x
(nL+ L/2) (10)

Thus, (9) becomes

M
∂2φ

∂t2
(nL) = KL

(
∂φ

∂x
(nL+ L/2) − ∂φ

∂x
(nL− L/2)

)
(11)

M
∂2φ

∂t2
(nL) = KL2 ∂

2φ

∂x2
(nL) (12)

which is exactly the partial differential equation for wave!

Problem 2. Find the speed of wave from (12) and check that it agrees with the answer

in Problem 1 in the limit when L goes to zero.

Summary

• When objects of the same mass are connected consecutively by springs of the same

spring constant, the amplitudes of each object given an eigenmode is given by a sine

function.

• For such eigenmodes, one can easily calculate the group velocity. In the limit that the

spacing between each object (i.e. the length of each spring) is zero, the group velocity is

a constant that does not depend on the wave number (or equivalently, the wavelength).
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