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Abstract

We present the vierbein formalism and Palatini action in general relativity. The

aim is to provide prerequisites for the Ashtekar variables formalism and the newer

variables formalism for general relativity. This article should be accessible to stu-

dents who are familiar with general relativity and differential forms.

1 Introduction of vierbein

The vierbein eaµ is defined by the following relation:

gµν = ηabe
a
µe
b
ν (1)

where gµν is the metric and ηab is defined as follows

ηab =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (2)

In other words, ηab is the metric for the flat Cartesian coordinate. Vier means four in

German and is pronounced as “fear.” Bein means leg in German, and is pronounced

as “bine.” We can see here that vierbein is like the “square root” of the metric, as

“square” of e is the metric. We also see here that (1) doesn’t uniquely determine the

vierbein. Considering the symmetricity of the metric (i.e. gµν = gνµ) the metric has ten

independent components. In other words, (1) are ten equations. On the other hand, we

have sixteen unknowns, as each of a and µ in eaµ can have four values. (i.e. a = 0, 1, 2, 3,

µ = 0, 1, 2, 3.) Therefore, there are six degrees of freedom in choosing the vierbein. (We

will talk more about this freedom in the next article.) Nevertheless, different choices

lead to the same physics.

(1) also implies the following:

ηab = gµνeaµe
b
ν (3)

where gµν is the inverse of the metric gµν , and ηab is the inverse of ηab
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We can prove this by multiplying ηbce
c
λ on its both-hand sides as follows.

ηabηbce
c
λ = gµνeaµe

b
νηbce

c
λ

δac e
c
λ = gµνeaµgνλ

eaλ = eaλ (4)

So, we conclude that the left-hand side of (3) is the same as its right-hand side.

Notice that vierbein e has two kinds of indices. One is the Latin index (i.e. a, b · · ·)
and the other is the Greek index (i.e. µ, ν · · ·). We raise and lower the Latin indices

by ηab or ηab, as they have two Latin indices and we raise and lower the Greek indices

by gµν or gµν as they have two Greek indices. In this case, the Latin indices are called

“Lorentz indices,” and the Greek indices “spacetime indices.” Now we can freely raise

and lower the indices of the vierbein as follows:

eaν = gµνeaµ (5)

ebµ = ηabe
a
µ (6)

eνb = gµνηabe
a
µ (7)

It turns out that eνb defined above is the inverse of eaµ. One can check this as follows:

eνb e
b
λ = gµνηabe

a
µe
b
λ = δνλ

eνb e
c
ν = gµληabe

a
µe
c
λ = δcb

where we have used (1) and (3).

So, why is vierbein called vierbein? First, notice

ηab = gµνe
µ
ae
ν
b (8)

If we regard eµa as a four-vector labeled by a, then we can write:

ηab = ~ea · ~eb (9)

Thus, vierbein is a set of four orthonormal vectors (i.e., ~e0, ~e1, ~e2, ~e3) defined at each

point. In other words, vierbein can be viewed as four legs attached at each point in

spacetime. Notice also that (9) is exactly Minkwoski version of (5) in “Dimension of

orthogonal group.” Thus, we see that the degree of freedom at each point must be the

dimension of the Lie group SO(3, 1), which is 6 as we found earlier.

2 Spin connection

Given the definition of vierbein, let’s turn to the covariant partial derivative Dµ that

acts on both spacetime indices and Lorentz indices. As much as one requires ∇αgµν = 0
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as a sacred characteristic of the metric, we require the following as a sacred characteristic

of the vierbein:

Dµebν = 0 (10)

Furthermore, notice that there are two different types of indices, so to define expression

above we need to use two different types of connection, namely the Christoffel symbols

Γ and the “spin connection”ω as follows:

Dµebν = ∂µebν − Γαµνebα − ωcµbeνc = 0 (11)

Noticing that the first two terms together make up the ordinary covariant derivative for

spacetime indices, we can write:

ωcµbeνc = ∇µebν

eνaω
c
µbeνc = eνa∇µebν

which implies

ωµab = eνa∇µebν (12)

Now, observe the following:

∇µηab = 0

∇µ(eνaebν) = 0

eνa∇µebν + ebν∇µeνa = 0

eνa∇µebν + eνb∇µeaν = 0

where we have used the fact ∇µgαβ = 0 in the last line.

Thus we can conclude:

ωµab = eνa∇µebν

= −eνb∇µeaν

= −ωµba (13)

In other words, the spin connection is antisymmetric with respect to the two Lorentz-

indices.

3 Torsion two-form

Observe the following:

Dµe
b
ν = ∂µe

b
ν − Γαµνe

b
α + ωbµce

c
ν = 0 (14)

Dνe
b
µ = ∂νe

b
µ − Γανµe

b
α + ωbνce

c
µ = 0 (15)
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By subtraction, we immediately see the following:

∂µe
b
ν − ∂νebµ + ωbµce

c
ν − ωbνcecµ = (Γαµν − Γανµ)ebα (16)

If we use the differential form notation as follows:

eb ≡ ebνdxν (17)

ωbc ≡ ωbνcdxν (18)

and define the torsion tensor as follows:

T b ≡ 1

2
T bµνdx

µ ∧ dxν ≡ 1

2
[(Γαµν − Γανµ)ebα]dxµ ∧ dxν (19)

we obtain:

deb + ωbc ∧ ec = T b (20)

In the index-free notation, we can write the above equation as follows:

de+ ω ∧ e = T (21)

4 Curvature two-form

In this section, we will obtain an expression for the curvature two-form, the vierbein

analogue of the Riemann tensor. First, as we have:

(∇µ∇ν −∇ν∇µ)edρ = Rρσµνe
σ
d + (Γαµν − Γανµ)∇αedρ (22)

we can write as follows:

Rcdµν ≡ Rρσµνeρceσd
= eρc [(∇µ∇ν −∇ν∇µ)edρ − (Γαµν − Γανµ)∇αedρ] (23)

However, we have:

eρc∇µ∇νedρ

= ∇µ(eρc∇νedρ)− (∇µeρc)(∇νedρ) (24)

Furthermore, we have:

(∇µeρc)(∇νedρ) = (∇µeαc )δρα(∇νedρ)

= (∇µeαc )ηabeρaebα(∇νedρ) (25)

Therefore, we can write:

Rcdµν = ∇µωνcd −∇νωµcd − ηab(ωµbcωνad − ωνbcωµad)− (Γαµν − Γανµ)ωαcd

= ∂µωνcd − ∂νωµcd + ηab(ωµcbωνad − ωνcbωµad) (26)
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Raising one of the indices, we can write:

Rcdµν = ∂µω
c
νd − ∂νωcµd + ωcµb(η

abωνad)− ωcνb(ηabωµad)

= ∂µω
c
νd − ∂νωcµd + ωcµbω

b
νd − ωcνbωbµd (27)

If we use the differential form notation, we have:

Rcd ≡
1

2
Rcdµνdx

µ ∧ dxν = dωcd + ωcb ∧ ωbd (28)

≡ 1

2
Rcdabe

a ∧ eb (29)

which is called the “curvature two-form.” If you are familiar with Yang-Mills theory,

you will notice that the above equation has exactly the same structure.

In index-free notation, we can write the above equation as follows:

R = dω + ω ∧ ω (30)

Therefore, if the torsion vanishes, the right-hand side of (21) is zero, so we can easily

obtain ω if e is given. From this ω, we can obtain the curvature by using (30)

5 Bianchi identities

Let’s take the exterior derivative of (21). We get:

dT = dω ∧ e− ω ∧ de (31)

We also have:

ω ∧ T = ω ∧ de+ ω ∧ ω ∧ e (32)

Therefore, we conclude:

dT + ω ∧ T = R ∧ e (33)

If torsion vanishes, we simply have:

R ∧ e = 0 (34)

It turns out that the above equation is the vierbein version of the following Bianchi

identity:

Rabcd +Rbcad +Rcabd = 0 (35)

(Problem 1. Show this.) Now, we have to derive the second Bianchi identity. From

(30), we have:

dR = dω ∧ ω − ω ∧ dω

ω ∧R = ω ∧ dω + ω ∧ ω ∧ ω

R ∧ ω = dω ∧ ω + ω ∧ ω ∧ ω (36)
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Therefore, we conclude:

dR+ ω ∧R−R ∧ ω = 0 (37)

It also turns out that this is the vierbein version of the following Bianchi identity:

∇aR e
bcd +∇bR e

cad +∇cR e
abd = 0 (38)

6 Gauge-covariant exterior derivative

It is natural to define the gauge-covariant exterior derivative as follows:

Dub = dub + ωbc ∧ uc (39)

since we will be able to write (20) as:

T b = Deb (40)

and (33) as

DT b = Rbc ∧ eb (41)

Also, given (39), taking a similar step to the one that led to (33), we obtain:

D2ub = Rbc ∧ uc (42)

To go further, it may be useful to write the gauge-covariant exterior derivative in

component form as follows:

Dµv
b = ∂µv

b + ωbµdv
d (43)

which implies

Dµvc = ∂µvc − ωdµcvd

Dvc = dvc − ωdc ∧ vd (44)

Then, as Rbc has one upper index (i.e. b) and one lower index (i.e. c), using (39) and

(44), we have:

DRbc = dRbc + ωbd ∧Rdc − ωdc ∧Rbd

= dRbc + ωbd ∧Rdc −Rbd ∧ ωdc (45)

where in the last step, we used the fact that Rbd is a two-form. Comparing with (37),

we can conclude that the second Bianchi identity can be written as:

DRbc = 0 (46)

6



7 Hodge dual

In four-dimensions, the Hodge-duality map, * (called the “star” operator), is defined as

follows:

∗(ea1 ∧ · · · ean) ≡ 1

(4− n)!
εa1···anan+1···a4e

an+1 ∧ · · · ∧ ea4 (47)

In other words, it is a natural and covariant map that provides a linear isomorphism

between n-forms and (4− n)-forms. Here ε is Levi-Civita symbol defined via ε0123 = 1,

and indices are raised by ηab. One can similarly define the star operator in any other

dimensions.

To get a sense of what the star operator does, let me give you some examples:

∗(e0 ∧ e1) = ε0123e
2 ∧ e3 = −e2 ∧ e3 (48)

∗(e2 ∧ e3) = ε2301e
0 ∧ e1 = e0 ∧ e1 (49)

Take two n-forms as follows:

λ =
1

n!
λa1···ane

a1 ∧ · · · ∧ ean (50)

σ =
1

n!
σb1···bne

b1 ∧ · · · ∧ ebn (51)

Then, given the definition of the Hodge star operator, we have:

λ ∧ ∗σ =
1

(n!)2
λa1···anσb1···bn

1

(4− n)!
εb1···bnan+1···a4e

a1 ∧ · · · ean ∧ ean+1 ∧ · · · ∧ ea4

=
1

n!
λa1···anσb1···bn

εb1···bnan+1···a4ε
a1···anan+1···a4

n!(4− n)!
e0 ∧ e1 ∧ e2 ∧ e3

=
1

n!
λa1···anσb1···bnη

a1b1 · · · ηanbne0 ∧ e1 ∧ e2 ∧ e3

=
1

n!
λa1···anσ

a1···ane0 ∧ e1 ∧ e2 ∧ e3 (52)

If we define the natural inner product as

< λ, σ >=
1

n!
λa1···anσ

a1···an (53)

and ε, the volume form, as follows:

ε = e0 ∧ e1 ∧ e2 ∧ e3 (54)

then, we can write (52) as follows:

λ ∧ ∗σ =< λ, σ > ε (55)
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The reason why ε is called the volume form is because it exactly gives the Jacobian

factor or equivalently
√
−g. Let’s prove this.

ε = e0 ∧ e1 ∧ e2 ∧ e3 = e0µe
1
νe

2
ρe

3
σdx

µ ∧ dxν ∧ dxρ ∧ dxσ

= e0µe
1
νe

2
ρe

3
σε
µνρσdx0 ∧ dx1 ∧ dx2 ∧ dx3

= (det e)dx0 ∧ dx1 ∧ dx2 ∧ dx3 (56)

Now, we have to prove that det e is the Jacobian factor.

Recall:

gµν = eIµe
J
ν ηIJ (57)

In the matrix notation this would be:

g = eT ηe (58)

Taking the determinant, we have:

det g = det e det η det e = −(det e)2 (59)

So, we conclude:

det e =
√
−g (60)

This completes the proof that ε is the volume form.

Actually, the Hodge dual can be defined without resorting to the vierbein. For

example, in the case that the spacetime concerned is 4-dimensional, the hodge dual can

be defined as follows:

∗(dxa1 ∧ · · · dxan) ≡ 1

(4− n)!
εa1···anan+1···a4dx

an+1 ∧ · · · ∧ dxa4 (61)

where ε here is the Levi-Civita tensor. (By abuse of notation, we used the same letter for

both Levi-Civita symbol and Levi-Civita tensor.) Compare this with our earlier formula

(47). The Levi-Civita symbol is replaced by the Levi-Civita tensor. The hodge dual

defined above is equivalent to our earlier definition. Let’s check this by considering the

following. According to our earlier definition, we have

∗1 = e0 ∧ e1 ∧ e2 ∧ e3 (62)

whereas according to our new definition, we have

∗1 =
√
−gdx0 ∧ dx1 ∧ dx2 ∧ dx3 (63)

So (62) and (63) are same. Here, in this article, we will not prove the equivalence of

(47) and (61) in the general case.
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As an aside, we want to note that our paper with Brian Kong “Black hole entropy

and Hawking radiation spectrum predictions without Immirzi parameter” is based on the

observation that traditional loop quantum gravity used the Levi-Civita symbol where

the Levi-Civita tensor should be used; for spacetime indices the Levi-Civita tensor, not

the Levi-Civita symbol, should be used.

8 The Palatini action

Now, consider the following integral:∫
εIJKL

1

2
eI ∧ eJ ∧RKL (64)

Notice that RKL here is not the Ricci tensor, but a curvature two-form. Notice also

that RKL = −RLK . We have:

=

∫
RKL ∧ (

1

2
εIJKLe

I ∧ eJ)

=

∫
RKL ∧ ∗(eK ∧ eL)

=

∫
1

2
RKLMNe

M ∧ eN ∧ ∗(eK ∧ eL)

=

∫
1

2
RKLMN < eM ∧ eN , eK ∧ eL >

=

∫
1

2
RKLMN (δMK δ

N
L − δML δNK )ε

=

∫
Rε (65)

So, this is precisely the Einstein-Hilbert action! Therefore, we conclude:

S =
1

16πG

∫
d4x
√
−gR =

1

16πG

∫
εIJKL

1

2
eI ∧ eJ ∧RKL (66)

Summary

• gµν = ηabe
a
µe
b
ν where gµν is the metric and ηab is the metric for the flat Cartesian

coordinate. eaµ is called “vierbein.”

• In other words, vierbein is like the “square root” of the metric.

• We raise and lower the Lorentz indices by η and we raise and lower the spacetime

indices by g.

• Dµebν = 0. Unlike ∇µ, the new partial derivatives Dµ act on the Lorentz indices

as well.

Dµeν ≈ ∂µeν − Γµνe− ωµeν = 0
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• The spin connection is antisymmetric with respect to the two Lorentz-indices

ωµab = −ωµba.

• de+ ω ∧ e = T .

• dω + ω ∧ ω = R.

• R ∧ e = 0.

• Gauge-covariant exterior derivative is given by

Dub = dub + ωbc ∧ uc

• In four-dimensions, the Hodge-duality map, ∗ gives a natural and covariant map

between n-forms and (4− n)-forms as follow.

∗(ea1 ∧ · · · ean) ≡ 1

(4− n)!
εa1···anan+1···a4e

an+1 ∧ · · · ∧ ea4

• The volume form is given by ε = e0 ∧ e1 ∧ e2 ∧ e3.

• The Einstein-Hilbert action is given by∫
εIJKL

1

2
eI ∧ eJ ∧RKL

Further Reading

The following books and lecture notes which I recommend were most helpful when

preparing this review paper: General Relativity by Robert Wald, Geometry, Topology

and Physics by M. Nakahara.Gravitation, Gauge Theories and Differential Geometry by

Tohru Eguchi, Peter B. Gilkey and Andrew J. Hanson, Introductory lectures to loop quan-

tum gravity by Pietro Doná and Simone Speziale (arXiv:1007.0402), Ashtekar Variables

in Classical General Relativity by Domenico Giulini (arXiv: gr-qc/9312032), Quantum

Gravity by Carlo Rovelli.
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