
Why is the probability proportional to the wave function

squared?

In our earlier articles, we mentioned that a probability is proportional to the wave
function squared (precisely speaking, its absolute value squared, or the absolute value of
the coefficient squared). In this article, we will explain why. We will consider a simple
scattering problem and show that the probability of reflection and the probability of
transmission add up to 1 in such a case.

To this end, we first need to explain that the first space derivative of the solution
to the time-independent Schrödinger equation is always continuous except at the points
where the potential is infinity or negative infinity. Let’s show this. The Schrödinger
equation is given by
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∂2ψ(x)

∂x2
+ V (x)ψ(x) = Eψ(x) (1)

What we want to show is
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as long as −∞ < V (a) <∞.
From (1), we have
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Thus, we obtain (2). (2) also implies that ψ(x) is continuous at a, as (2) cannot be
satisfied, otherwise.

Now, we are ready. We will solve the Schrödinger equation for the following potential
for a particle with mass m:

V (x) =

{
0, x < 0

V0, x ≥ 0
(6)

For E > V0 > 0, the solution is given by

ψ(x) =

{
AeikLx +Be−ikLx, x < 0

FeikRx +Ge−ikRx, x ≥ 0
(7)

where
h̄2k2L
2m

= E,
h̄2k2R
2m

= E − V0 (8)
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As AeikLx is the eigenvector of the momentum operator with the eigenvalue h̄kL, A is
related to the amplitude of the wave moving right with the momentum h̄kL (i.e., the
speed h̄kL/m) in the region x < 0. Similarly, B is related to the amplitude of the wave
moving left with the speed h̄kL/m in the region x < 0. Likewise, F (G) is related to the
amplitude of the wave moving right(left) with the speed h̄kR/m in the region x > 0.

Given this, let’s impose a physical condition. Let’s say that we are shooting a particle
with energy E from the left (i.e., x < 0). This particle moving right with the speed
h̄kL/m has the amplitude A. Then, it will either reflect at x = 0 and move left with
the speed h̄kL/m in the region x < 0 or transmit at x = 0 or move right with the speed
h̄kR/m in the region x > 0. The related amplitude is respectively, B and F . As there
is no particle coming from the right for the region x > 0 (we didn’t shoot any particle
toward the left on the right region), we should have G = 0. Thus, (7) becomes

ψ(x) =

{
AeikLx +Be−ikLx, x < 0

FeikRx, x ≥ 0
(9)

Now, we can impose the condition that ψ and
∂ψ

∂xx
are continuous at x = 0, and obtain

a relation between A, B and F .
At this point, careful readers may notice that our problem is exactly the same as

the one in our earlier article “Reflection and transmission of travelling wave.” The
calculation is exactly the same as before and we obtain (Problem 1.)

B

A
=
kL − kR
kL + kR

,
F

A
=

2kL
kL + kR

(10)

Given this, how can we calculate the probability that the particle will reflect at
x = 0 and transmit at x = 0. The flux of particle moving right in the left region
is |A|2(h̄kL/m). The flux of reflected particle is given by |B|2(h̄kL/m). The flux of
transmitted particle is given by |F |2(h̄kR/m). Thus, the probability of reflection, R and
the probability of transmission, T are given by

R =
|B|2(h̄kL/m)

|A|2(h̄kL/m)
, T =

|F |2(h̄kR/m)

|A|2(h̄kL/m)
(11)

Problem 2. Simplify the above expressions for R and T by plugging in (10). Check
that R+ T = 1.

This completes our demonstration. Notice that we would not obtain this result, if
the probability is proportional to the wave function cubed or to the fourth power. (Of
course, the cubed case is already ruled out because it would give a negative probability.)

Max Born was the one who first showed that the probability must be proportional
the wave function (precisely speaking absolute value) squared. He considered a similar
case to the one we considered in this article. Instead of (6), he considered a potential
non-zero only near x = 0. In this case, as we have kL = kR, (11) becomes

R =
|B|2

|A|2
, T =

|F |2

|A|2
(12)

Then, he derived a relation similar to (2) by manipulating Schrödinger equation and
showed |A|2 = |B|2 + |F |2, which results in R + T = 1. Subsequently, he went on to
consider 3 dimensional case to show that the probability is indeed proportional to the
wave function squared.
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Problem 3. Consider the case (6) again, but this time 0 < E < V0. Show that
R = 1, i.e., total reflection. In other words, the particle is too weak to overcome the
potential barrier (i.e., E < V0) to reach x = +∞. You can think of it as potential barrier
but infinitely thick. The tunneling probability is therefore zero.

Summary

� Except at the points where the potential is +∞ or −∞, the solution to the time-
independent Schrödinger equation and its first space derivative are always contin-
uous.

� By considering a scattering problem, we can confirm that the probability is pro-
portional to the absolute value of the wave function squared. Otherwise, the
probability for reflection and the probability for transmission do not add up to 1.
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